Bonus is done
This commit is contained in:
68
BQ.c
68
BQ.c
@@ -1,10 +1,13 @@
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
// Bonus Question
|
||||
// All rows, columns, and diagonals are equal
|
||||
|
||||
/* Find if all rows, columns, and diagonals in squares have equals sums.
|
||||
* Will create an array to hold sums for each row, column, and diagonal. Arr length is (2 * length) + 2
|
||||
* Then check if all sums in array are equal
|
||||
*/
|
||||
|
||||
// Sum of each row, in arr
|
||||
// Sum of each row in arr
|
||||
int find_row_sum(const int arr[], int len) {
|
||||
int sum = 0;
|
||||
for(int i = 0; i < len; i++) {
|
||||
@@ -12,16 +15,17 @@ int find_row_sum(const int arr[], int len) {
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
// Sum Of each column, in arr
|
||||
int find_column_sum(const int arr[3][3],int row, int len) {
|
||||
// Sum of each column in arr
|
||||
int find_column_sum(int len, const int arr[len][len],int row) {
|
||||
int sum = 0;
|
||||
for(int i = 0; i < len; i++) {
|
||||
sum+=arr[row][i];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
// Sum of diagonals, in arr
|
||||
int find_diagonal_sum(const int arr[3][3], int len) {
|
||||
|
||||
// Function to find diagonal sum from top left to bottom right
|
||||
int find_diagonal_sum(int len, const int arr[len][len]) {
|
||||
int sum = 0;
|
||||
int j = 0;
|
||||
for(int i = 0; i < len; i++) {
|
||||
@@ -30,7 +34,8 @@ int find_diagonal_sum(const int arr[3][3], int len) {
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
int find_diagonal_sum_the_other_way(const int arr[3][3], int len) {
|
||||
// Function to find diagonal sum from bottom left to top right
|
||||
int find_diagonal_sum_the_other_direction(int len, const int arr[len][len]) {
|
||||
int sum = 0;
|
||||
int j = len - 1;
|
||||
for(int i = 0; i < len; i++) {
|
||||
@@ -39,7 +44,7 @@ int find_diagonal_sum_the_other_way(const int arr[3][3], int len) {
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Final function to check if all nums in sum are equal, aka is the square perfect
|
||||
bool is_perfect_square(const int arr[], int len) {
|
||||
bool is_perfect = true;
|
||||
for(int i = 0; i < len - 1 && is_perfect; i++) {
|
||||
@@ -50,28 +55,43 @@ bool is_perfect_square(const int arr[], int len) {
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Input will be a set matrix for now
|
||||
int M = 3;
|
||||
int square[3][3] = {{8, 1, 6}, {3, 5, 7}, {4,9,2}};
|
||||
int M; // Length of squares sides
|
||||
printf("Enter square length: ");
|
||||
scanf("%d", &M);
|
||||
|
||||
int sums[2*M + 2];
|
||||
// MAKE THIS SINGLY LINKED LIST LATER
|
||||
int square[M][M];
|
||||
|
||||
// Input values into matrix
|
||||
for(int i = 0; i < M; i++) {
|
||||
sums[i] = find_row_sum(square[i], M);
|
||||
}
|
||||
for(int i = 0; i < M; i++) {
|
||||
for (int j = M; j < 2 * M; j++) {
|
||||
sums[j] = find_column_sum(square, i, M);
|
||||
for(int j = 0; j < M; j++) {
|
||||
printf("Enter matrix value %d, %d: ", i, j);
|
||||
scanf("%d", &square[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
sums[2*M] = find_diagonal_sum(square, M);
|
||||
sums[2*M+1] = find_diagonal_sum_the_other_way(square, M);
|
||||
for(int i = 0; i < sizeof(sums)/sizeof(sums[0]); i++) {
|
||||
printf("%d ", sums[i]);
|
||||
// The array that will hold our calculated sums
|
||||
int sums[2*M + 2];
|
||||
// Find sum for each row
|
||||
for(int i = 0; i < M; i++) {
|
||||
sums[i] = find_row_sum(square[i], M);
|
||||
}
|
||||
// Find sum for each column
|
||||
for(int i = 0; i < M; i++) {
|
||||
for (int j = M; j < 2 * M; j++) {
|
||||
sums[j] = find_column_sum(M, square, i);
|
||||
}
|
||||
}
|
||||
// Find first diagonal
|
||||
sums[2*M] = find_diagonal_sum(M, square);
|
||||
// Find second diagonal
|
||||
sums[2*M+1] = find_diagonal_sum_the_other_direction(M, square);
|
||||
//
|
||||
if(is_perfect_square(sums, M)) {
|
||||
printf("The matrix is a Magic Square");
|
||||
}
|
||||
else {
|
||||
printf("The matrix is not a Magic Square");
|
||||
}
|
||||
|
||||
printf("\n%d", is_perfect_square(sums, M));
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user